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Setup
Standard setup:
▶ Z . . .data space

▶ F . . .family of functions

▶ ℓ : F × Z → [0,∞) . . .loss

Define the risk

RP (f) := EZ∼P

{
ℓ(f, Z)

}
,

for some distribution P on Z .

Define themodel class risk as:

RP (F) := inf
f∈F

RP (f).
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E.g. in regression could have:

▶ Z = Rd × R
▶ F could be given by:

▶ {x 7→ x⊤β : β ∈ Rd}
▶ a smoothness class
▶ a neural network architecture
▶ . . .

▶ for (x, y) ∈ Rd × R and f ∈ F , e.g.
ℓ
(
f, (x, y)

)
:=

(
f(x)− y

)2
.
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Main question

Define themodel class risk as:
RP (F) := inf

f∈F
RP (f).

Overall goal: Given an i.i.d. data set Dn := (Z1, . . . , Zn) ∼ Pn, can we conduct
meaningful inference on RP (F) without making assumptions on P ?

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Remark: Upper bounds are simpler, as RP (F) ≤ RP (f0) for all f0 ∈ F −→ Asymmetry.
Note: Can use lower bound on RP (F) to upper bound the excess risk RP (f0)− inff∈F RP (f).

Manuel M. Müller 4/12



Main question

Define themodel class risk as:
RP (F) := inf

f∈F
RP (f).

Overall goal: Given an i.i.d. data set Dn := (Z1, . . . , Zn) ∼ Pn, can we conduct
meaningful inference on RP (F) without making assumptions on P ?

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Remark: Upper bounds are simpler, as RP (F) ≤ RP (f0) for all f0 ∈ F −→ Asymmetry.
Note: Can use lower bound on RP (F) to upper bound the excess risk RP (f0)− inff∈F RP (f).

Manuel M. Müller 4/12



Main question

Define themodel class risk as:
RP (F) := inf

f∈F
RP (f).

Overall goal: Given an i.i.d. data set Dn := (Z1, . . . , Zn) ∼ Pn, can we conduct
meaningful inference on RP (F) without making assumptions on P ?

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Remark: Upper bounds are simpler, as RP (F) ≤ RP (f0) for all f0 ∈ F −→ Asymmetry.
Note: Can use lower bound on RP (F) to upper bound the excess risk RP (f0)− inff∈F RP (f).

Manuel M. Müller 4/12



Main question

Define themodel class risk as:
RP (F) := inf

f∈F
RP (f).

Overall goal: Given an i.i.d. data set Dn := (Z1, . . . , Zn) ∼ Pn, can we conduct
meaningful inference on RP (F) without making assumptions on P ?

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Remark: Upper bounds are simpler, as RP (F) ≤ RP (f0) for all f0 ∈ F −→ Asymmetry.

Note: Can use lower bound on RP (F) to upper bound the excess risk RP (f0)− inff∈F RP (f).

Manuel M. Müller 4/12



Main question

Define themodel class risk as:
RP (F) := inf

f∈F
RP (f).

Overall goal: Given an i.i.d. data set Dn := (Z1, . . . , Zn) ∼ Pn, can we conduct
meaningful inference on RP (F) without making assumptions on P ?

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Remark: Upper bounds are simpler, as RP (F) ≤ RP (f0) for all f0 ∈ F −→ Asymmetry.
Note: Can use lower bound on RP (F) to upper bound the excess risk RP (f0)− inff∈F RP (f).

Manuel M. Müller 4/12



A trivial solution

Definition. Fix α ∈ (0, 1), n ≥ 1 and F . L̂α(F , ·) : Zn → [0,∞] is a distribution-free (DF) lower
bound on RP (F) if

inf
P

PDn∼Pn

(
RP (F) ≥ L̂α(F ,Dn)

)
≥ 1− α.

Trivial solution: Take

L̂α(F ,Dn) :=

{
0 with probability 1− α,

∞ with probability α.

Let’s call any lower bound trivial (for F and P ) that satisfies

P
(
L̂α(F ,Dn) > 0

)
≤ α+ o(1).

(When) Can we get nontrivial lower bounds?
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A first lower bound
Define the empirical (model class) risk:

R̂(f,Dn) :=
1

n

n∑
i=1

ℓ(f, Zi) and R̂(F ,Dn) := inf
f∈F

R̂(f,Dn).

Theorem. The following gives a valid lower bound:

L̂ERM
α (F ,Dn) := α · R̂(F ,Dn).

(Proof idea: Combine Markov’s inequality with EP [R̂(F ,Dn)] ≤ inff∈F RP (f) = RP (F).)

Remark 1: If the loss is bounded, can improve this to
(
1− o(1)

)
· R̂(F ,Dn).

Remark 2: This is non-zero if and only if R̂(F ,Dn) > 0.

Question: In modern settings, we often have R̂(F ,Dn) = 0. Can we still have
L̂α(F ,Dn) > 0 then?
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Fundamental hardness

Question: In modern settings, we often have R̂(F ,Dn) = 0. Can we still have
L̂α(F ,Dn) > 0 then?

Theorem. Any DF lower bound L̂α(F , ·) must satisfy for all N ≥ n and P that

PP

{
L̂(F ,Dn) ≤ R̂(F ,DN )

}
≥ 1− α− n2

2N
.

Suppose F and P are such that R̂(F ,DN ) = 0 for N ≫ n2. Then:

PP

{
L̂(F ,Dn) > 0

}
≤ α+ o(1).
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What have we learned so far?

Definition. (Interpolation capacity of F under P )

N(F , P ) := sup
{
k ∈ N : PDk∼Pk

(
R̂(F ,Dk) = 0

)
= 1

}
N+(F , P ) := sup

{
k ∈ N : PDk∼Pk

(
R̂(F ,Dk) = 0

)
> 0

}
.

Of course, N(F , P ) ≤ N+(F , P ).

0 n n2

Low-complexity regime
N+(F , P ) < n ?

High-complexity regime
n2 ≪ N(F , P )

R̂(F ,Dn) > 0 a.s., so
L̂ERM
α (F ,Dn) = αR̂(F ,Dn) > 0

R̂(F ,DN ) = 0, a.s., even if N ≫ n2,
so all L̂α(F ,Dn) are trivial

Interpolation
capacity of F
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What about the gap?

0 n n2

Low-complexity regime
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Example A: Linear Regression.
Take F = F (d)

lin = {x 7→ x⊤β : β ∈ Rd} and ℓ
(
f, (x, y)

)
=

(
y − f(x)

)2
.

For P with a density on Rd × R:

N(F (d)
lin , P ) = N+(F (d)

lin , P ) = d.

Proposition. Let P have a density, and PX = Nd(0,Σ) for Σ ≻ 0. Then, for d ≫ n and any L̂α:

PDn∼Pn

{
L̂α(F (d)

lin ,Dn) > 0
}
≤ α+ o(1).

=⇒ See the paper for far more general results.
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R̂(F ,DN ) = 0, a.s., even if N ≫ n2,
so all L̂α(F ,Dn) are trivial

Interpolation
capacity of F
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Example B: Piecewise constant regression (e.g. random forests).
Take F = F (m)

pwc := {f : Rd → R : |{f(x) : x ∈ Rd}| ≤ m} and ℓ
(
f, (x, y)

)
=

(
y − f(x)

)2
.

Theorem. There existsmn ∝ n2, such that the following is a DF lower bound for F (mn)
pwc :

L̂pwc
α (F (mn)

pwc ,Dn) :=
α

2
R̂(F (n−1)

pwc ,Dn).

Note: Let P be atom-free. Then N(F (mn)
pwc , P ) = mn ∝ n2 and at the same time almost surely

R̂(F (n−1)
pwc ,Dn) > 0 and hence:

L̂pwc
α (F (mn)

pwc ,Dn) > 0.
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Summary: our findings

Question: When can we construct empirical, non-zero, distribution-free lower bounds on the model
class risk RP (F) := inff∈F EZ∼P {ℓ(f, Z)}?

Answer: This is driven by two phase-transitions in the interpolation capacity of F under P :

0 n n2

Low-complexity regime
N+(F , P ) < n

In-between regime
High-complexity regime

n2 ≪ N(F , P )

A non-trivial lower
bound exists

A case-by-case analysis for
different choices of F is needed

No non-trivial lower
bound exists

Interpolation
capacity of F
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Conclusion

Thank you!

Reference:
▶ M., M. M., Luo, Y. and Barber, R. F. (2025). Are all models wrong? Fundamental limits in

distribution-free empirical model falsification. arXiv:2502.06765.

Find the slides on manuelmmueller.github.io.
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